Layering, freezing, and re-entrant melting of hard spheres in soft confinement.
نویسندگان
چکیده
Confinement can have a dramatic effect on the behavior of all sorts of particulate systems, and it therefore is an important phenomenon in many different areas of physics and technology. Here, we investigate the role played by the softness of the confining potential. Using grand canonical Monte Carlo simulations, we determine the phase diagram of three-dimensional hard spheres that in one dimension are constrained to a plane by a harmonic potential. The phase behavior depends strongly on the density and on the stiffness of the harmonic confinement. While we find the familiar sequence of confined hexagonal and square-symmetric packings, we do not observe any of the usual intervening ordered phases. Instead, the system phase separates under strong confinement, or forms a layered re-entrant liquid phase under weaker confinement. It is plausible that this behavior is due to the larger positional freedom in a soft confining potential and to the contribution that the confinement energy makes to the total free energy. The fact that specific structures can be induced or suppressed by simply changing the confinement conditions (e.g., in a dielectrophoretic trap) is important for applications that involve self-assembled structures of colloidal particles.
منابع مشابه
Model Soft Colloids out of Equilibrium: Glass-like and Re-entrant Transitions
Star polymers with tunable number and size of arms, and thus interactions, represent ideal model systems for exploring the regime of soft material behaviour that interpolates between hard spheres and polymeric coils. This regime is characterized by a rich variety of properties that reflect the combination of polymeric and colloidal features. In this review we discuss some of these properties, a...
متن کاملRe-entrant melting and freezing in a model system of charged colloids.
We studied the phase behavior of charged and sterically stabilized colloids using confocal microscopy in a low polarity solvent (dielectric constant 5.4). Upon increasing the colloid volume fraction we found a transition from a fluid to a body centered cubic crystal at 0.0415+/-0.0005, followed by reentrant melting at 0.1165+/-0.0015. A second crystal of different symmetry, random hexagonal clo...
متن کاملDensity functional theory for the freezing of soft-core fluids.
We present a simple density functional theory for the solid phases of systems of particles interacting via soft-core potentials. In particular, we apply the theory to particles interacting via repulsive point Yukawa and Gaussian pair potentials. We find qualitative agreement with the established phase diagrams for these systems. The theory is able to account for the bcc-fcc solid transitions of...
متن کاملA Scheduling Model for the Re-entrant Manufacturing System and Its Optimization by NSGA-II
In this study, a two-objective mixed-integer linear programming model (MILP) for multi-product re-entrant flow shop scheduling problem has been designed. As a result, two objectives are considered. One of them is maximization of the production rate and the other is the minimization of processing time. The system has m stations and can process several products in a moment. The re-entrant flow sho...
متن کاملDynamical signatures of freezing: stable fluids, metastable fluids, and crystals.
Mean squared displacements and velocity auto correlation functions are calculated using molecular dynamics for hard spheres under a range of conditions (i) for the equilibrium fluid below freezing; (ii) for the metastable fluid above freezing; and (iii) for the hard sphere crystal, both in the metastable region between freezing and melting, and in the stable region above melting. In addition, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2012